<var id="p11hx"></var>
<ins id="p11hx"><noframes id="p11hx">
<var id="p11hx"></var>
<cite id="p11hx"><strike id="p11hx"><thead id="p11hx"></thead></strike></cite><menuitem id="p11hx"></menuitem>
<del id="p11hx"><noframes id="p11hx"><var id="p11hx"><dl id="p11hx"><progress id="p11hx"></progress></dl></var>
<var id="p11hx"><strike id="p11hx"></strike></var>
<var id="p11hx"></var><cite id="p11hx"><strike id="p11hx"><listing id="p11hx"></listing></strike></cite><var id="p11hx"><video id="p11hx"><thead id="p11hx"></thead></video></var>
<cite id="p11hx"></cite>
<menuitem id="p11hx"></menuitem>
<cite id="p11hx"></cite>
<cite id="p11hx"></cite><var id="p11hx"><strike id="p11hx"><listing id="p11hx"></listing></strike></var> <var id="p11hx"></var>
<var id="p11hx"><strike id="p11hx"></strike></var><var id="p11hx"><strike id="p11hx"><listing id="p11hx"></listing></strike></var>
<var id="p11hx"></var>
<var id="p11hx"></var>
<menuitem id="p11hx"></menuitem>
<i id="p11hx"><noframes id="p11hx"><ins id="p11hx"></ins>
<var id="p11hx"></var>
<cite id="p11hx"></cite>
<cite id="p11hx"><video id="p11hx"><thead id="p11hx"></thead></video></cite>
尋找隱秘的維度

年代:2008 

首映:2008-10-28(美國)

時長:53分鐘

語言:英語

觀看量:1653

豆瓣:8.8

更新:2024-07-11 15:35

劇情:
電影特效、股市和心臟病有什么相似之處?它們連接了數學的一個革命性的新分支,改變了我們看待世界的方式,并為科學分析和理解開辟了廣闊的新領域。數學家從簡單的好奇心發展到理解幾乎每一個分支,包括我們宇宙的命運,形成了不規則的碎片。
展開
線路F1

圖集

  • 尋找隱秘的維度 圖1
  • 尋找隱秘的維度 圖2
  • 尋找隱秘的維度 圖3
  • 尋找隱秘的維度 圖4
  • 尋找隱秘的維度 圖5
  • 尋找隱秘的維度 圖6
  • 尋找隱秘的維度 圖7
  • 尋找隱秘的維度 圖8
  • 尋找隱秘的維度 圖9
  • 尋找隱秘的維度 圖10

影述

“尋找隱秘的維度”everywhere

The film is about fractal geometry. Someone calls fractal geometry 'the natural dynamics of everything' (a video title, 2011, available at https://www.youtube.com/watch?v=yUM7e0tIFi0). Why? Because it explains the shapes of everything in the nature: why the British coastline looks like that, why mountains looks like that, why the trees look like that, why the vessels in the body look like that, ect., etc..
Fractal geometry was invented by Benoit Mandelbrot from 1950. In general, it is a combination of classical geometry (coined by Euclid) and algorithm. The most famous fractal - The Mandelbrot Set - derives from a circle and a generating function 'f(z) = z^2 + c'. (For more knowledge, visit http://mathworld.wolfram.com/MandelbrotSet.html)

Loren Carpenter (visualize)-> what the planes might look like in flight.
Fractals - Form, Chance, and Dimension by Benoit Mandelbrot
It's one of the keys to fractal geometry call iteration in mathematicians.
First Mountain and then "Star Trek II" the Wrath of khan.
Self-similarity always zoom in and out the object look the same.
People like the great 19th century Japanese artist Katsushika Hokusai
the mystery of the monsters, a story really begins in later 19 century, Georg Cantor (German)
Created first monsters in 1883, call " Cantor Set."
Another by the Swedish Helge Von Koch, one of the classical Euclidean geometric figures.
in the 1940s, British Scientist Lewis Richardson,
Koch Curve he wrote a very famous article i Science Magazine called " How Long is the Coastline of British."
Dimension
French Gaston Julia
Mandelbrot in IBM

曼德爾布洛特集
科赫雪花
分形應用
用于探知為何體積越大單位所需能量越少,即E=M的3/4方。
用于解決無線通訊中如藍牙、無線通訊、wifi等需要單獨頻率但避免多個天線的應用
用于檢測心臟健康。
三年前看過的紀錄片,這是我——一個理科不好的同學對于自然科學最后的反撲,因為硬想要深刻所以覺得這部顯得平淡,其實放開了心態看的話,就只要坐著感嘆好美啊好美啊好奇妙啊就可以了,科學原理乃至現實應用不妨交給科學家們來做。

以分形理論來說,fractal could be found in everywhere
那么時候地球所在的太陽系甚至銀河系也是茫茫宇宙的某個分形中的一只branch?
神奇

“尋找隱秘的維度”everywhere
轉載請注明網址: http://www.kangshuodianzhi.org/zhonghe/vod-59835.html

展開

豆瓣推薦

粒子狂熱
9.02013年美國紀錄片
萬物與虛無
9.32011年英國紀錄片

美國傳記片

本周熱播

觀看榜

更多推薦

8.02005中國大陸傳記片
99久久精品国产一区二区三区